*FM 5-33 HEADQUARTERS DEPARTMENT OF THE ARMY Washington, DC, 11 July 1990

Terrain Analysis

Preface

SCOPE

Terrain analysis, an integral part of the intelligence preparation of the battlefield (IPB), plays a key role in any military operation. During peacetime, terrain analysts build extensive data bases for each potential area of operations. They provide a base for all intelligence operations, tactical decisions, and tactical operations. They also support the planning and execution of most other battlefield functions. Because terrain features continually undergo change on the earth's surface, data bases must be continuously revised and updated.

PURPOSE

This field manual prescribes basic doctrine and is intended to serve as a primary source of the most current available information on terrain analysis procedures for all personnel who plan, supervise, and conduct terrain analysis. The manual discusses the impact of the terrain and the weather on operations.

USER INFORMATION

The proponent of this publication is the US Army Engineer School. Submit changes for improving the publication on DA Form 2028 (Recommended Changes to Publications and Blank Forms) to Commandant, Directorate of Training and Doctrine, US Army Engineer School, ATTN: ATSE-TDM-P, Ft. Leonard Wood, MO 65473-6500.

Approved for public release; distribution is unlimited.

Unless otherwise stated, whenever the masculine gender is used, both men and women are included.

*This publication supersedes FM 21-33, 15 May 1978, and FM 30-10, 27 March 1972.

Table of Contents

INTRODUCTION

RESPONSIB	ILITIES	Inter 1
Analys	sts	Intro-1
, marye	Data base assembly	Intro-1
	Data base assembly	Intro-1
	Evaluation	Intro-2
	Analysis	Intro-3
	Interpretation	Intro-4
	Integration	-
	Coordination	Intro-5
Limita	Coordination	Intro-5
Units		Intro-5
	Division Terrain Teams	Intro-5
	Terrain Analysis Support at Corps	
	Topographic Company	T
	Topographic Battalion at Echelons Above	Intro-5
	Corps (EAC)	
PRODUCTS	Corps (EAC)	Intro-6
	• • • • • • • • • • • • • • • • • • • •	Intro 6
Analys	ls	Intro-7
Terrair	n Teams	Intro Q
USAF	Weather Teams	muro-8
		Intro-8

PART ONE. TERRAIN EVALUATION AND VERIFICATION

Chapter 1. Natural Terrain

SURFACE CONFIGURATION
Landforms
Relief
Slope or Gradient
VEGETATION FEATURES
Types
Photographic Texture
Photographic Texture
Photographic Tone
SOIL FEATURES
Type Determination
Classification
Unified Soil Classification System (USCS)
Physical fests
Field Identification
WATER FEATURES
Quantity
Quality
Contamination
Pollution
Porosity and Permeability
Drainage
Surface 1-12
Surface
Subsurface
Patterns
Density

OBSTACLES	 	 	 		 	 1-15
Identification	 	 •••	 	••••	 	 1-15

Chapter 2. Man-Made Features

URBAN AREAS
TRANSPORTATION
Highways
Features
Road Classification
Railroads
Identification Keys
Fixed Installations
Rolling Stock
Railheads
End Points
Number of Tracks
Bridges
Features
Bridge Reporting
Culverts
Tunnels, Galleries, and Snowsheds 2-14
Tunnels
Galleries and Snowsheds
Ferries
Fords
Low-water Bridges
Cableways and Tramways
Pipelines
Components
Terminal Facilities
Ports and Harbors
Ports
Harbors
Cranes (Cargo-handling Equipment) 2-22
Anchorage
Wharves
Harbor Craft
Shipyards
Naval Bases
Landings
Airfields

PART TWO. ANALYSIS PROCEDURES

Chapter 3. Natural Terrain

SURFACE CONFIGURATION OVERLAY	. 3-1
VEGETATION OVERLAY	. 3-4
SURFACE MATERIALS ANALYSIS (SOILS)	3-17
OBSTACLE OVERLAY	3-25

Chapter 4. Man-Made Features

TRANSPORTATION IDENTIFICATION4-1
Roads
Bridges, Tunnels, Galleries, and Snowsheds
Fords
Ferries
Airfields
Heliports
Railroads
PHOTO ANALYSIS OF TRANSPORTATION
Oblique Aerial Photography 4-9
Aerial Photographic Measurements
Surface Material and Conditions 4-10
Bridge
Ford Width
Ford Bottom Characteristics 4-12
Length of Ferry Crossing 4-13
Single Photo Method
Mosaic Method
Ferry Terminal Layout
Airfields
Railroads
Inland Waterways
Facilities and Installation
URBAN AREAS

Chapter 5. Lines of Communication, Cover, and Concealment

LINES OF COMMUNICATION		·1
Roads		
Bridges and Overpasses		.3
Railroads		.4
Airfields		-5
Remaining Factor Overlays		
COVER FROM FLAT TRAJECTORY WEAPON	5-	-6
CONCEALMENT FROM AERIAL DETECTION		-7

Chapter 6. Cross-country Movement (CCM) .

Chapter 7. Line of Site and Zone of Entry	•	•
PERFORM AVENUE OF APPROACH SYNTHESIS PROCEDURE		6-15
CONSTRUCT COMPLEX FACTOR OVERLAY		6-12
PREPARE CCM OVERLAY		6-1

٩

Chapter 7. Line of Site and Zone of Entry

LINE OF SITE		 			 									 •					 	 			7-1
Topographic Map Method		 			 			•						 •					 	 			7-2
Aerial Photograph Method		 •••	• •		 • •	••		•			•		• •						 	 			7-4
ZONE OF ENTRY		 •••			 			•											 	 			7-5
Categories	• •	 •••			 	• •		•			•			 •					 	 			7-5
Airfields		 		• • •	 			•		• •									 • •	 			7-5
Description .	•••	 •••	•••	•••	 	• •	• •	•	• •		•	• •		 •	••	 •	•••	•	 	 	• •	• •	7-5

Criteria	7-5
Air Landing Zones	7-7
Description	7-7
Criteria	7-7
Helicopter Landing Zones	7-8
Drop Zones	7-9
Ports	7-10
Description	7-10
Amphibious Landing Beaches	7-11
Synthesis Procedures	7-11
hapter 8. Final Overlay Preparation	8-1

PART FOUR. PHOTOGRAPHIC TECHNIQUES

1

Chapter 9. Vertical Photography

Scale Determination
Ground Distance Determination
Plotting Template Adjustment
Proportional Dividers Use
Photo Coverage
Photo Coverage for a Specific Area
Height Determination
Parallax Method
Shadow Method
Relief Displacement Method
Area Measurement
QPS Area Measurement

Chapter 10. Mathematical Techniques

GEOMETRIC FUNCTIONS	10-1
Determination of Area	10-1
Determination of Volume	10-2
Angle of Repose	10-3
TRIGONOMETRIC FUNCTIONS	10-4
Six Functions	10-4
Right Triangles	
Pythagorean Theorem	10-6
APPENDIX A. MENSURAL CONVERSIONS	A-1

APPENDIX B. WEATHER

TYPES OF WEATHER INFORMATION	B-1
Weather Observation	B-1
Weather Forecasts	B-2
Climatology	B-2
WEATHER ELEMENTS	B-3
Temperature	B-3
Wind	B-4

Precipitation	B	-5
---------------	---	----

APPENDIX C. AERIAL AND GROUND IMAGERY SOURCES

AERIAL IMAGERY SOURCES
Federal Agencies
State Agencies
Commercial Firms
Foreign Government Agencies
GLOSSARY. Glossary-1
GLOSSARY. Glossary-1 REFERENCES References-1

Introduction

Throughout history, the knowledge and physical effects of terrain have played a dominant role in the development of society during both peace and war. Terrain is a portion of the earth's surface that includes man-made and natural features. Terrain analysis is the process of analyzing and interpreting these features and the influence of weather and climate on them. Terrain data (or information) is raw data in any form about a segment of terrain. Knowledge of the battlefield terrain is extremely important during all phases and levels of military planning.

Analysis is the process of interpreting natural and man-made features of a geographic area to determine their effects on military operations. Terrain analysis support during battle provides the combat commander with expedient, tailored, and updated products. Expedient responses, especially at division level, are necessary to properly and adequately inform commanders of the impact of terrain on the battle at hand.

Terrain intelligence is thus one aspect of operational intelligence. Terrain analysts produce terrain intelligence for use at the tactical and strategic levels of operation. Operational intelligence, however, is important at all levels, so commanders at higher headquarters may use products produced at lower levels.

Terrain analysis is still important during the postbattle stage. The battle will sig-nificantly alter the terrain, requiring updating of previously performed terrain analysis. The terrain analyst may also need to update completed products that have potential value for the next battle.

RESPONSIBILITIES

Analysts

Data base assembly All terrain teams get as much terrain data as possible for their respective areas of inter-est. The Defense Mapping Agency (DMA) is responsible for producing the standard planning terrain analysis data base (PTADB) and the tactical terrain analysis data base (TTADB) used by the terrain analysis to support the maneuver commander's needs. In those areas of the world where coverage is not available, the terrain analysis team must